DHS SCIENCE AND TECHNOLOGY

S&T's Research, Development, Testing and Evaluation (RDT&E) Efforts re COVID-19

Science and Technology

April 13, 2020

Department of Homeland Security

FOR OFFICIAL USE ONLY

THE ATTACHED MATERIALS CONTAIN DEPARTMENT OF HOMELAND SECURITY INFORMATION THAT IS "FOR OFFICIAL USE ONLY," OR OTHER TYPES OF SENSITIVE BUT UNCLASSIFIED INFORMATION REQUIRING PROTECTION AGAINST UNAUTHORIZED DISCLOSURE. THE ATTACHED MATERIALS WILL BE HANDLED AND SAFEGUARDED IN ACCORDANCE WITH DHS MANAGEMENT DIRECTIVES GOVERNING PROTECTION AND DISSEMINATION OF SUCH INFORMATION.

AT A MINIMUM, THEATTACHED MATERIALS WILL BE DISSEMINATED ONLY ON A NEED TO KNOW BASIS AND WHEN UNATTENDED, WILL BE STOREDIN A LOCKED CONTAINER OR AREA OFFERING SUFFICIENT PROTECTION AGAINST THEFT, COMPROMISE, INADVERTENT ACCESS AND UNAUTHORIZED DISCLOSURE.

UNCLASSIFIED//FOR OFFICIAL USE ONLY

Unclassified//For Official Use Only

Bottom Line Up Front

DHS S&T is engaged in extensive operationally-focused RDT&E efforts to support DHS with the best possible information to assist decision-making.

	What?	Why?	Findings	Impact	Next Steps
SURFACE STABILITY	Testing stability of SARS-CoV-2 virus on solid surfaces as function of temp, humidity, and solar intensity	To try and find conditions that promote virus decay as well as better characterize the virus	Virus is most stable in cool/dry conditions. Virus decays faster in higher humidity and temperature, much faster in sunlight	Increasing temperature & humidity in contaminated areas as well as moving any feasible operations outdoors in sunlight reduces risk	Validation testing across more surface types; development of predictive decay model as a function of temp/ humidity/solar
DECON	Testing commercially- available products for efficacy against SARS- CoV-2	To verify that these products work not only on the virus, but also on the virus in complex samples (like saliva)	Bleach and 70% isopropyl alcohol both work well when using manufacturer's recommended contact time	Commercially available products tested to date appear effective even against complex samples (saliva).	Test shorter contact times; test more commercially- available products (8 in total)
AEROSOL STABILITY	Testing stability of SARS-CoV-2 virus in the air as function of temp, humidity, and solar intensity	To inform aerosol/ respiratory hazard and PPE decisions	Virus is very stable in no-solar conditions	Increasing air exchanges (increasing HVAC exchanges, opening windows) may reduce indoor aerosol risk; Importance of respiratory protection for staff who may be near to COVID-19 (+) individuals indoors	Development of predictive decay model as a function of temp/ humidity /solar
PPE REUSE	Testing if vaporous hydrogen peroxide (VHP) is effective against virus and doesn't degrade mask; developing low-cost decon alternatives	Close critical gaps on VHP operations and develop low-tech solutions for non-VHP locations	TBD; testing starting this week	Inform large-scale (VHP) and low-resource decisions on PPE decon & reuse	Obtain laboratory results and disseminate information
	Constant crosswalk of commercial solutions and known Component needs	Quickly match Component needs to capabilities	Ongoing; tailor analyses available; standing up decon- specific office	Reduce burden on individual Components; leverage S&T expertise & capabilities to rapidly triage solutions	Continue to support crosswalk of commercial solutions to Component needs

Overview

Emerging Results from NBACC's COVID-19 Characterization Efforts

- Surface Stability
- Disinfectant Testing
- Aerosol Stability
- Other DHS S&T COVID-19 efforts
- Master Question List (MQL)
- DHS S&T Tech Scouting

NBACC's Planned SARS-CoV-2 Characterization Research

Study Type					Parame	ters	
Virus in three suspensions: 1) cell culture, 2) saliva (modified), 3) respiratory fluid (modified)	Wet and Dry (Virus)	Small and Large Particle	Droplet	Temperature	Humidity	Sunlight	Notes
Surface Stability	~	×	~	1	~	1	Stainless Steel, Plastic, Nitrile
Decontamination	~	N/A	×	N/A	N/A	N/A	Stainless steel; 8 EPA Recommended Disinfectants
Aerosol Stability	N/A	~	N/A	*	~	~	
Homeland Security	Cor	npleted		In Progre	SS	Not Sta	arted Yet

UNCLASSIFIED//FOR OFFICIAL USE ONLY

Science and Technology

NBACC's Emerging Results: Surface Stability Indoor Conditions

 What is being tested: how long does the virus survive in a droplet of saliva (e.g., from a cough/sneeze) and a dried droplet of saliva deposited on stainless steel in varying temperature, humidity, and sunlight

Results

- Virus lives longer at low humidity and inactivates faster at higher humidity
- Virus lives longer at low temperatures and inactivates faster as temperature increases
- Sunlight destroys the virus <u>quickly</u>

Operational Relevance

- Risk of transmission from surfaces outdoors is lower during daylight
- Higher temperature & humidity of indoor environments will reduce the viral contamination on surfaces faster
- Surfaces in low humidity environments (e.g., airplane cabins) may require additional care to minimize risk of transmission

Why stainless steel?

- NBACC had already-established methods for recovery off of this surface (generate data quickly)
- Generally, in our experience, nonporous surfaces are more conducive to biological stability than porous surfaces (like cloth or cardboard)
 - Thus, data generated on this surface will be a conservative, or worst-case, estimate of decay
- Methods for recovery off of porous surfaces are not well developed and hard to make repeatable/reproducible
- NBACC plans to validate findings on other surface types and on nonporous surfaces in future tests

NBACC's Emerging Results: SARS-CoV-2 Stability on *Indoor Surfaces*

6

NBACC's Emerging Results: SARS-CoV-2 Stability on Indoor Surfaces

Results:

Simulated sunlight greatly increases inactivation rate of virus dried on surfaces (relative to darkness)

Solar Intensity	Half-Live (Min)	Fram
Full Intensity	~2 min	Full i NYC/
Half Intensity	3 min	day o solsti
Quarter Intensity	4 min	Quar NYC/
No Light (Dark	No decay > 60 min	end c

rame of Reference:

Full intensity = NYC/DC during clear day on summer solstice

Quarter Intensity = IYC/ DC clear day and of February

 Sunlight reduced infectious virus to undetectable levels after just 3 minutes of exposure to the solar equivalent of midday sun on a sunny day in the middle latitudes of the US.

Summary:

 Simulated solar light rapidly inactivated the virus (outdoor)

Operational Relevance:

Outdoor surfaces exposed to sunlight are lower risk for virus transmission

Ongoing and planned work: Repeat with a higher concentration of virus to better understand decay rate

What else needs to be known:

- 1. How much virus does it take to infect?
- 2. How much virus is on the surface?
- 3. How much virus comes off when touched?

NBACC's Emerging Results: SARS-CoV-2 Decontamination from surfaces

Estimated Reduction in Virus						
Matrix	Droplet	70% Isopropyl Alcohol (IPA) 30 sec contact	Diluted Bleach (0.26% Hypochlorite) 5 min contact			
Culture medium	Wet	> 99.9%	> 99.9%			
	Dried	> 98,1%	> 99.9%			
Simulated saliva	Wet	> 99.3%	> 99.3%			
	Dried	> 96.4%	> 96.2%			

Summary:

0.26% hypochlorite (bleach) OR 70% isopropyl alcohol killed SARS-CoV-2 in both wet and dried saliva on stainless steel

Operational Relevance:

Commercially available & EPA recommended disinfectants (Bleach & IPA) used as recommended are effective at disinfecting both old (dried) and freshly (wet) contaminated saliva on a non-porous surface.

Ongoing and planned work:

- Test shorter contact times for cleaners;
- Test other off-the-shelf products (Lysol spray, peracetic acid, Clorox hydrogen peroxide cleaner, etc.)

NBACC's Aerosol Hazard Assessment Approach/Capabilities

NBACC is the <u>only</u> US biocontainment laboratory with the capability to evaluate survival of biological hazards in aerosols under a range of operationally relevant conditions:

- Custom aerosol chambers with ability to control temp, humidity, and sunlight simultaneously
 - Determine how long biological agent survives in the air under indoor and outdoor conditions
- Expertise in aerobiology, aerosol science, and aerosol engineering
 - Over a decade of experience and established methods for in-depth and "operationally focused" analysis of aerosols containing biological agents
 - Experimental design is used to produce a model which accounts for interaction between test factorsenabling virus decay predictions between tested conditions.

Bience and Technology

NBACC's Emerging Results: SARS-CoV-2 Aerosol Stability

Additional ongoing DHS S&T COVID-19 Projects

Project: PPE Decon & Reuse

- Verify vaporous hydrogen peroxide (VHP) techniques are effective against SARS-CoV-2 with a range of mask types
 - Evaluate both biological decay and physical degradation & fit
- 2. Test additional small-scale, low-tech techniques that could be implemented in lower-resource settings
 - Looking at devices such as rice cookers, clothes steamers, electric pressure cookers

Project: Waste stream survivability

 Understand the survival of the virus in human waste streams to inform decontamination and remediation decisions

Operational Relevance:

In addition the healthcare relevance, may impact DHS operations along the border, especially in low-resource or improvised settings (e.g., using port-a-johns)

Operational Relevance:

- Address key unknowns in VHP decontamination and reuse protocols
- Provide options that could be implemented in smaller regional settings

Homeland Security

Master Question List

- S&T developed & maintains a SARS-CoV-2 Master Question List (MQL):
 - Summarizes current knowledge and provides authoritative sources/citations
 - Tracks ongoing research efforts on the virus worldwide
 - IMPACT: Provides situational awareness of these important efforts
 - Similar model used during the response to 2015 Ebola outbreak
- Key elements of MQL:
 - What is known?
 - What additional information is needed?
 - Who may be working to address such fundamental questions?

https://www.dhs.gov/publication/st-master-question-list-covid-19

Tech Response and Scouting Updates

Recent Support to DHS Components and Key HSE Partners

- → Tech Scouting reports on diagnostic test kits and disinfectants for USSS & FLETC.
- → Disinfectants report and Ambulance Decon Systems Survey provided to MGMT
- → Provided U.S. Navy with Ambulance Decon Survey, disinfectants scouting report, COVID-19 Response Opportunities document, & NASA robotics program info

Reviewing Input From Industry for Consideration

39 New products/proposals reviewed (March 30 – April 6). Received by S&T PMs, S&T SMEs, and the Innovation Inbox. Reviewed by S&T SMEs.

Total reviewed (March 18-April 6)

"Hot topics": Face shields and masks, ventilators, rapid screening to detect COVID-19, and sanitizer/disinfectants.

5RD International Research Overview

	Australia	Canada	UK	New Zealand
Primary Foci	Diagnostics, Vaccines	Diagnostics, Experimental Therapeutics, Vaccines, Animal Susceptibility	Diagnostics, Vaccines	In development
Alignment with DHS priorities	Virus Characterization- Decay of dried virus on range of surfaces using metal coupons (<i>no</i> capability for aerosolized) Slightly different virus Slightly different conditions	 Surface Stability- Dried virus on various surfaces (N95, nitrile, Tyvek) Decontamination- 1) Decon with different agents (VPH, temperature, Peroxide cloths, Masks, etc. – results pending) 2) Mask tests (results pending) ⁸ 	Surface stability- Virus survival on surfaces & recovery from aluminum (simulated military material ^{&}) Decontamination- Using military grade products ^{&}	In development

[&]: Denotes valuable capability or aspect not currently implemented in current DHS S&T studies

24/7/365 Availability | Biological Threat Characterization | Bioforensic Analysis | Biosafety Level 2,3, and 4 Laboratories

About NBACC:

- Supports America's defense against biological threats. Primary capabilities include:
 - National Bioforensic Analysis Center (NBFAC)
 - National Biological Threat Characterization Center (NBTCC)
- A national resource for 24/7 biodefense including sensitive experiments.
- Only domestic maximum biocontainment lab built specifically for national security purposes.

Recent notable NBACC mission impacts via its two Centers:

- NBFAC Conducted Nearly 600K Analyses Last Year for FBI and Other Gov't Partners: The NBACC's NBFAC conducted nearly 600,000 analyses in 2019 in support of the FBI and other U.S. Government partners—more than in any previous 12-month period in NBFAC's history. Federal prosecutions using NBFAC analyses have been 100% successful.
- NBACC R&D Innovations Enhance Our Ability to Research Ebola: Research scientists from the facility's NBTCC designed new methods to measure the amount of infectious Ebola virus present in an air sample using a technique that is ten times more sensitive than previous methods used to effectively evaluate the risk of transmitting the virus.

How is the NBACC Different?

NBACC located in Fort Detrick, Maryland, specializes in bioforensics and characterization of biological threats for national security.

Homeland Security Mission	Highly-Relevant Expertise	Optimized Infrastructure	
 Focused to meet the specific needs of the DHS and Homeland Security Enterprise biodefense mission space 	 Aerobiology specialization Scientists with security clearances Ability to conduct sensitive studies 	 Maximum biocontainment (BSL-4) Support 24/7 operations for biodefense 365 days a year 	

Key Characteristics of NBACC and Peer Biodefense Labs	NBACC	NIAID IRF-RML (MT)	NIAID IRF-Frederick (MD)	USAMRIID	CDC	U.Tex
*Diagnostics	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
*Evaluation of therapeutics/vaccines in cells and animal models	Surge capacity	~	\checkmark	~	\checkmark	~
Aerobiology: Inhalational exposure studies in animal models	\checkmark	~	~	\checkmark	Ξ.	\checkmark
Conduct classified life science research with high risk agents	\checkmark		-	æ.	-	-
Conduct operationally focused bioforensic case work	\checkmark	-	-	-	-	-
<u>Aerobiology</u> : Assess environmental factors that affect agent decay in the air	~	Limited to ambient conditions	-	-	2	
Aerobiology: Assess environmental factors for agent decay on surfaces	~	Eimited to ambient conditions		-		æ
Advanced medical imaging of animal models of disease		-	~	-	-	-